First high-resolution global vegetation height map

In Issue58 by FIEA

Using an artificial neural network, researchers at ETH Zurich have created the first high-resolution global vegetation height map for 2020 from satellite images. This map could provide key information for fighting climate change and species extinction, as well as for sustainable regional development planning.

Last year marked the beginning of the UN Decade on Ecosystem Restoration. This initiative is aimed at halting the degradation of ecosystems by 2030, preventing it going forward and, if possible, remedying the damage that has already been done. Delivering on these kinds of projects calls for accurate foundations, such as surveys and maps of the existing vegetation.

In an interview, Ralph Dubayah, the Principal Investigator of NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission, explains: “We simply do not know how tall trees are globally. […] We need good global maps of where trees are. Because whenever we cut down trees, we release carbon into the atmosphere, and we don’t know how much carbon we are releasing.”

Analyzing and preparing precisely this kind of environmental data is what the EcoVision Lab in the ETH Zurich Department of Civil, Environmental and Geomatic Engineering specializes in. Founded by ETH Zurich Professor Konrad Schindler and University of Zurich Professor Jan Dirk Wegner in 2017, this lab is where researchers are developing machine learning algorithms that enable automatic analysis of large-scale environmental data.

One of those researchers is Nico Lang. In his doctoral thesis, he developed an approach—based on neural networks—for deriving vegetation height from optical satellite images. Using this approach, he was able to create the first vegetation height map that covers the entire Earth: the Global Canopy Height Map.

The map’s high resolution is another first: thanks to Lang’s work, users can zoom in to as little as 10×10 meters of any piece of woodland on Earth and check the tree height. A forest survey of this kind could lead the way forward particularly in dealing with carbon emissions, as tree height is a key indicator of biomass and the amount of carbon stored. “Around 95 percent of the biomass in forests is made up of wood, not leaves. Thus, biomass strongly correlates with height,” explains Konrad Schindler, Professor of Photogrammetry and Remote Sensing.

More >>

Source: Workingforest

Share this Post